Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 149

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Development of a Multiphysics Coupled Solver for Studying the Effect of Dynamic Heterogeneous Configuration on Particulate Debris Bed Criticality and Cooling Characteristics

Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*

Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07

 Times Cited Count:1 Percentile:56.82(Chemistry, Multidisciplinary)

Journal Articles

Numerical investigations on the coolability and the re-criticality of a debris bed with the density-stratified configuration

Li, C.-Y.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.

Journal Articles

A Coupled modeling simulator for near-field processes in cement engineered barrier systems for radioactive waste disposal

Benbow, S. J.*; Kawama, Daisuke*; Takase, Hiroyasu*; Shimizu, Hiroyuki*; Oda, Chie; Hirano, Fumio; Takayama, Yusuke; Mihara, Morihiro; Honda, Akira

Crystals (Internet), 10(9), p.767_1 - 767_33, 2020/09

 Times Cited Count:2 Percentile:26.13(Crystallography)

Details are presented of the development of a coupled modeling simulator for assessing the evolution in the near-field of a geological repository for radioactive waste disposal where concrete is used as a backfill. The simulator uses OpenMI, a standard for exchanging data between simulation software programs at run-time, to form a coupled chemical-mechanical-hydrogeological model of the system. The approach combines a tunnel scale stress analysis finite element model, a discrete element model for accurately modeling the patterns of emerging cracks in the concrete, and a finite element and finite volume model of the chemical processes and alteration in the porous matrix and cracks in the concrete, to produce a fully coupled model of the system. Combining existing detailed simulation software in this way with OpenMI has the benefit of not relying on simplifications that might be necessary to combine all of the modeled processes in a single piece of software.

Journal Articles

Numerical simulation on self-leveling behavior of mixed particle beds using multi-fluid model coupled with DEM

Phan, L. H. S.*; Ohara, Yohei*; Kawata, Ryo*; Liu, X.*; Liu, W.*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Tagami, Hirotaka

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 12 Pages, 2018/10

Self-leveling behavior of core fuel debris beds is one of the key phenomena for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The SIMMER code has been developed for CDA analysis of SFRs, and the code has been successfully applied to numerical simulations for key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, in SIMMER's fluid-dynamics model, it is always difficult to represent the strong interactions between solid particles as well as the discrete particle characteristics. To solve this problem, a new method has been developed by combining the multi-fluid model of the SIMMER code with the discrete element method (DEM) for the solid phase to reasonably simulate the particle behaviors as well as the fluid-particle interactions in multi-phase flows. In this study, in order to validate the multi-fluid model of the SIMMER code coupled with DEM, numerical simulations were performed on a series of self-leveling experiments using a gas injection method in cylindrical particle beds. The effects of friction coefficient on the simulation results were investigated by sensitivity analysis. Though more extensive validations are needed, the reasonable agreement between simulation results and corresponding experimental data preliminarily demonstrates the potential ability of the present method in simulating the self-leveling behaviors of debris bed. It is expected that the SIMMER code coupled with DEM is a prospective computational tool for analysis of safety issues related to solid particle debris bed in SFRs.

Journal Articles

Numerical simulation of solid-particle sedimentation behavior using a multi-fluid model coupled with DEM

Kawata, Ryo*; Ohara, Yohei*; Sheikh, Md. A. R.*; Liu, X.*; Matsumoto, Tatsuya*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Suzuki, Toru

Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09

Journal Articles

Thermal-hydraulic analyses of the High-Temperature engineering Test Reactor for loss of forced cooling at 30% reactor power

Takamatsu, Kuniyoshi

Annals of Nuclear Energy, 106, p.71 - 83, 2017/08

The HTTR, which is the only HTGR having inherent safety features in Japan, conducted a safety demonstration test involving a loss of both reactor reactivity control and core cooling. The paper shows thermal-hydraulics during the LOFC test at an initial power of 30% reactor power (9 MW), when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero. The analytical results could show that the downstream of forced convection caused by the HPS pushes down the upstream by natural convection in the fuel assemblies; however, the forced convection has little influence on the core thermal-hydraulics without the reactor outlet coolant temperature. As a result, the three-dimensional thermal-phenomena inside the RPV during the LOFC test could be understood qualitatively.

Journal Articles

Current status of the next generation fast reactor core & fuel design and related R&Ds in Japan

Maeda, Seiichiro; Oki, Shigeo; Otsuka, Satoshi; Morimoto, Kyoichi; Ozawa, Takayuki; Kamide, Hideki

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 10 Pages, 2017/06

The next generation fast reactor is being investigated in Japan, aiming at several targets such as "safety", "reduction of environmental burden" and "economic competitiveness". As for the safety aspect, FAIDUS concept is adopted to avoid re-criticality in core destructive accidents. The uranium-plutonium mixed oxide fuel, in which minor actinide elements are included, will be applied to reduce the amount and potential radio-toxicity of radioactive wastes. The high burn-up fuel is pursued to reduce fuel cycle cost. The candidate concept of the core and fuel design, which could satisfy various design criteria by design devisals, has been established. In addition, JAEA is investigating material properties and irradiation behavior of MA-MOX fuel. JAEA is developing the fuel design code especially for the fuel pin with annular pellets of MA-bearing MOX. Furthermore, JAEA is developing oxide dispersion strengthened (ODS) ferritic steel cladding for the high burnup fuel.

Journal Articles

Investigation of countermeasure against local temperature rise in vessel cooling system in loss of core cooling test without nuclear heating

Ono, Masato; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.044502_1 - 044502_4, 2016/10

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to verify safety evaluation codes to investigate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from gas circulators with stopping water flow in the VCS, the local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2014 (Joint research)

Kobayashi, Masato*; Saito, Masahiko*; Iwatani, Takafumi*; Nakayama, Masashi; Tanai, Kenji; Fujita, Tomoo; Asano, Hidekazu*

JAEA-Research 2015-018, 14 Pages, 2015/12

JAEA-Research-2015-018.pdf:5.43MB

JAEA and RWMC concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe URL Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, The Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2014 continuing since fiscal year 2008. Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing since fiscal year 2008. This report summarizes the results of the research on engineering technology carried out in this collaboration work in fiscal year 2014.

Journal Articles

Investigation of characteristics of natural circulation of water in vessel cooling system in loss of core cooling test without nuclear heating

Takada, Shoji; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Seki, Tomokazu; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to demonstrate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. The local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2013 (Joint research)

Fujita, Tomoo; Tanai, Kenji; Nakayama, Masashi; Sawada, Sumiyuki*; Asano, Hidekazu*; Saito, Masahiko*; Yoshino, Osamu*; Kobayashi, Masato*

JAEA-Research 2014-031, 44 Pages, 2015/03

JAEA-Research-2014-031.pdf:16.11MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system (EBS) and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2012 (2011/2012) continuing since fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing since fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2013. In fiscal year 2013, emplacement tests using buffer material block for the vertical emplacement concept were carried out and visualization tests for water penetration in buffer material were carried out.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2013; Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2014-047, 153 Pages, 2015/02

JAEA-Review-2014-047.pdf:23.43MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2013 and March 31, 2014.

Journal Articles

Experiments and validation analyses of HTTR on loss of forced cooling under 30% reactor power

Takamatsu, Kuniyoshi; Tochio, Daisuke; Nakagawa, Shigeaki; Takada, Shoji; Yan, X.; Sawa, Kazuhiro; Sakaba, Nariaki; Kunitomi, Kazuhiko

Journal of Nuclear Science and Technology, 51(11-12), p.1427 - 1443, 2014/11

 Times Cited Count:13 Percentile:69.89(Nuclear Science & Technology)

In a safety demonstration test involving a loss of both reactor reactivity control and core cooling, HTGRs such as the HTTR, which is the only HTGR in Japan, demonstrate that the reactor power would stabilize spontaneously. In the test at an initial power of 30%, when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero, a reactor transient was initiated and examined. The results confirmed that the reactor power would decrease immediately and become effectively zero.

Journal Articles

Present status of linear plasma devices and issues on DEMO divertor design

Sakamoto, Mizuki*; Ono, Noriyasu*; Asakura, Nobuyuki; Hoshino, Kazuo

Purazuma, Kaku Yugo Gakkai-Shi, 90(8), p.473 - 479, 2014/08

no abstracts in English

Journal Articles

Improvement of core dynamics analysis of control rod withdrawal test in HTGR

Takamatsu, Kuniyoshi; Nakagawa, Shigeaki

Nihon Genshiryoku Gakkai Wabun Rombunshi, 5(1), p.45 - 56, 2006/03

The HTTR (High Temperature Engineering Test Reactor), which has thermal output of 30MW, coolant inlet temperature of 395$$^{circ}$$C and coolant outlet temperature of 850$$^{circ}$$C/950$$^{circ}$$C, is a first high temperature gas-cooled reactor (HTGR) in Japan. The HTGR has a high inherent safety potential to accident condition. Safety demonstration tests using the HTTR are underway in order to demonstrate such excellent inherent safety features of the HTGR. A one-point core dynamics approximation with one fuel channel model had applied to this analysis. It was found that the analytical model for core dynamics couldn't simulate the reactor power behavior accurately. This report proposes an original method using temperature coefficients of some regions in the core. It is crucial to evaluate this method precisely to simulate a performance of HTGR during the test.

Journal Articles

Design study of superconducting coils for the fusion DEMO plant at JAERI

Isono, Takaaki; Koizumi, Norikiyo; Okuno, Kiyoshi; Kurihara, Ryoichi; Nishio, Satoshi; Tobita, Kenji

Fusion Engineering and Design, 81(8-14), p.1257 - 1261, 2006/02

 Times Cited Count:6 Percentile:41.32(Nuclear Science & Technology)

In order to realize an economically competitive power generation system, generation of a higher field is required. Toroidal Field (TF) coils of fusion DEMO plant at JAERI are required to generate magnetic field of 16 to 20 T. To realize this high field, advanced superconducting materials, such as Nb$$_3$$Al and high temperature superconductor (HTS), are considered. HTS has enough performance in a 20-T field at 4 K, and a forced-cooled type HTS conductor using a silver alloy sheathed Bi-2212 round wire has been proposed. Required areas of superconductor, structure, stabilizer, coolant and insulator in the cross section of coil winding have been calculated. However, there are many technical issues to be solved, such as accurate temperature control during heat treatment in an atmosphere of oxygen. On the other hand, a large coil using Nb$$_3$$Al has been developed by JAERI, and major technology to fabricate a 16-T Nb$$_3$$Al coil was developed. Validity and issues of grading the winding area are discussed, and there is a possibility to increase a field up to around 17 T using the method.

Journal Articles

Conceptual study of ECH/ECCD system for fusion DEMO plant

Sakamoto, Keishi; Takahashi, Koji; Kasugai, Atsushi; Minami, Ryutaro; Kobayashi, Noriyuki*; Nishio, Satoshi; Sato, Masayasu; Tobita, Kenji

Fusion Engineering and Design, 81(8-14), p.1263 - 1270, 2006/02

 Times Cited Count:6 Percentile:41.32(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Design study of a neutral beam injector for fusion DEMO plant at JAERI

Inoue, Takashi; Hanada, Masaya; Kashiwagi, Mieko; Nishio, Satoshi; Sakamoto, Keishi; Sato, Masayasu; Taniguchi, Masaki; Tobita, Kenji; Watanabe, Kazuhiro; DEMO Plant Design Team

Fusion Engineering and Design, 81(8-14), p.1291 - 1297, 2006/02

 Times Cited Count:11 Percentile:60.11(Nuclear Science & Technology)

Requirement and technical issues of the neutral beam inejctor (NBI) is discussed for fusion DEMO plant. The NBI for the fusion DEMO plant should be high efficiency, high energy and high reliability with long life. From the view point of high efficiency, use of conventional electrostatic accelerator is realistic. Due to operation under radiation environment, vacuum insulation is essential in the accelerator. According to the insulation design guideline, it was clarified that the beam energy of 1.5$$sim$$2 MeV is possible in the accelerator. Development of filamentless, and cesium free ion source is required, based on the existing high current/high current density negative ion production technology. The gas neutralization is not applicable due to its low efficiency (60%). R&D on an advanced neutralization scheme such as plasma neutralization (efficiency: $$>$$80%) is required. Recently, development of cw high power semiconductor laser is in progress. The paper shows a conceptual design of a high efficiency laser neutralizer utilizing the new semiconductor laser array.

Journal Articles

Operation of the electrostatic accelerators

Mizuhashi, Kiyoshi; Uno, Sadanori; Okoshi, Kiyonori; Chiba, Atsuya; Yamada, Keisuke; Saito, Yuichi; Ishii, Yasuyuki; Sakai, Takuro; Sato, Takahiro; Yokota, Wataru; et al.

JAEA-Review 2005-001, TIARA Annual Report 2004, P. 371, 2006/01

no abstracts in English

Journal Articles

Experimental study on spatial uniformity of H$$^{-}$$ ion beam in a large negative ion source

Hanada, Masaya; Seki, Takayoshi*; Takado, Naoyuki*; Inoue, Takashi; Morishita, Takatoshi; Mizuno, Takatoshi*; Hatayama, Akiyoshi*; Imai, Tsuyoshi*; Kashiwagi, Mieko; Sakamoto, Keishi; et al.

Fusion Engineering and Design, 74(1-4), p.311 - 317, 2005/11

 Times Cited Count:7 Percentile:44.84(Nuclear Science & Technology)

no abstracts in English

149 (Records 1-20 displayed on this page)